Existence and Uniqueness of Optimal Control to the Navier-Stokes Equations

نویسندگان

  • Thomas Bewley
  • Roger Temam
  • Mohammed Ziane
چکیده

In this note we establish the existence and uniqueness of solutions for optimal control problems for the 2D Navier-Stokes equations in a 2D-channel. Our approach is based on infinite-dimensional optimization ; the cost functional is shown to be strictly convex. Generalization to other control problems as well as a gradient algorithm are presented. Existence et unicité du contrôle optimal des équations de Navier-Stokes Résumé : Dans cette note, nous démontrons l’existence et l’unicité de solutions pour des problèmes de contrôle optimal pour les équations de Navier-Stokes dans un canal bidimensionnel. Notre approche est fondée sur l’optimisation en dimension infinie ; nous montrons que la fonctionnelle du coût est strictement convexe. Quelques généralisations à d’autres problèmes du contrôle ainsi qu’un algorithme du gradient sont aussi présentés. Version française abrégée. Dans cette note, nous étudions le problème du contrôle optimal des équations de Navier-Stokes dans un canal bidimensionnel Ω. Nous nous plaçons dans le cadre d’optimisation en dimension infinie et nous montrons que la fonctionnelle du coût est strictement convexe. Les équations de Navier-Stokes sont écrites sous la forme abstraite : du dt + Ay +B(u) = Bφ, u(0) = u0, 1 où φ est le paramètre de contrôle supposé appartenir à un sous-ensemble H de L(0, T, (L(Ω))) qui est fermé, borné et convexe. La fonctionnelle de coût est donnée par J(φ) = 1 2 ∫ T

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Bellman Equations Associated to The Optimal Feedback Control of Stochastic Navier-Stokes Equations

We study the infinite dimensional second-order Hamilton-Jacobi-Bellman equations associated to the feedback synthesis of stochastic Navier-Stokes equation forced by space-time white noise. Uniqueness of viscosity solutions and short-time existence are proven for these infinite dimensional partial differential equations.

متن کامل

Shape optimization for stationary Navier -

Abstract: This work discusses geometric optimization problems governed by stationary Navier-Stokes equations. Optimal domains are proved to exist under the assumption that the family of admissible domains is bounded and satisfies the Lipschitz condition with a uniform constant, and in the absence of the uniqueness property for the state system. Through the parametrization of the admissible shap...

متن کامل

Ergodic Control of Stochastic Navier-stokes Equation with Lévy Noise

In this work we consider the controlled stochastic Navier-Stokes equations perturbed by Lévy noise in a two dimensional bounded domain and a semimartingale formulation is used to characterize the probability law defining the space-time statistical solution. The existence and uniqueness of invariant measures or stationary measures is examined under suitable assumptions on the noise coefficient. ...

متن کامل

Smooth Solutions to the 3D Navier-Stokes Equations Exist

In 1999, J.C. Mattingly and Ya. G. Sinai used elementary methods to prove the existence and uniqueness of smooth solutions to the 2D Navier-Stokes equations with periodic boundary conditions. And they were almost successful in proving the existence and uniqueness of smooth solutions to the 3D Navier-Stokes equations with periodic boundary conditions using the same strategy. In this paper, we mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000